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Phase space embedding of electrocardiograms
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~Received 20 April 1998; revised manuscript received 30 June 1998!

We study properties of the human electrocardiogram under the working hypothesis that fluctuations beyond
the regular structure of single cardiac cycles are unpredictable. Against this background we discuss the pos-
sibility of using the phase space embedding method for this kind of signal. In particular, the specific nature of
the stochastic or high-dimensional component allows us to use phase space embeddings for certain signal
processing tasks. As practical applications, we discuss noise filtering, fetal ECG extraction, and the automatic
detection of clinically relevant features. The main purpose of the paper is to connect results of embedding
theory that have not been previously applied in practice, and practical applications that have not yet been
justified theoretically.@S1063-651X~98!10911-X#
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I. INTRODUCTION

In nonlinear time series analysis, methods developed
nonlinear dynamics are applied to time series data in orde
capture as much of the underlying structure as possible.
central question is whether the dynamics of the system
be reconstructed on the basis of the data given. Given
case in which the considered system is deterministic,
dynamics unambiguously evolves one state in phase s
into another. Therefore, the reconstruction of phase spac
a fundamental problem that plays the key role in many
plications: as long as the state space reconstruction rem
unjustified all of the consequent analysis may be wro
From this point of view, we discuss the phase space emb
ding of realistic signals in the example of the normal hum
electrocardiogram. An introduction to nonlinear dynamics
found in @1,2#. An account of nonlinear time series metho
is given by@3#.

The electrocardiogram~ECG! is one of the most promi-
nent clinical tools to monitor the activity of the heart.
order to record an electrocardiographical signal, metal e
trodes are placed on the patient’s chest wall and extrem
~for details see, e.g.,@4#!. The potentials are generated by t
atrial and ventricular muscle fibers. Due to the placemen
the electrodes on the skin at some distance from the h
the signals measured correspond to action potentials tha
averaged over large regions of tissue. The spreading of
electrical activity over the cardiac muscle is controlled by
conduction system of the heart. Atrial and ventricular co
traction and relaxation, respectively, correspond to charac
istic ECG waves that are traditionally labeled in alphabe
order beginning with the letterP. As long as the averag
heart rate does not change dramatically, a nonpatholog
ECG shows a nearly periodic structure, which is due to
continuous generation of action potentials and the fixed
tern according to which the electrical activity spreads
over the cardiac muscle. However, apart from the determ
istic structure some kind of variability can be found. On o
hand, the length of the time interval between success
beats fluctuates—to a certain extent—around the mean h
rate.~In the medical literature the inter-beat-interval is oft
called theRR interval, which is defined as the time betwe
PRE 581063-651X/98/58~5!/6392~7!/$15.00
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two consecutiveR waves.! On the other hand, a slight varia
tion of the cycle shape and amplitude can be observed. B
kinds of fluctuations can be gathered from Fig. 1, where t
different cycles of the same ECG sequence are shown
one can see in Fig. 2, part of the variation of the heart r
~middle trace! of a human at rest can be connected with t
breath cycle~upper trace!. ~Data from the Santa Fe Institut
time series contest@5#.! The lower trace contains a random
ized sequence that has the same autocorrelation struc
and the same cross correlation to the breath rate as
middle trace. For details regarding the generation of th
surrogate data, and further references, see Ref.@6#. These
random surrogate data explain most but not all of the und
lying structure by linear correlations. One explanation for t
remaining structure might be the presence of a hi
dimensional or nonlinear stochastic component. In this pa
we adopt as a working hypothesis that the fluctuations in
instantaneous heart rate are effectively unpredictable.

The Fourier domain is inappropriate to capture the str
ture described above, since the variation in cycle length le
to a dominating broad band component. An alternat
would be to formulate the dynamics of the ECG cycle by
stochastically driven model in a low dimensional pha
space. Since this space is not fully accessible by meas
ments, we propose the use of the delay reconstruction t
nique @7# as a convenient tool for revealing both the regu
and stochastic aspects of the electrocardiogram. Using
technique, one attempts to reconstruct the state variablesj of
the system represented in phase space on the basis o

FIG. 1. Two different cycles of the same ECG have be
aligned~indicated by the arrow! right before the beginning of theP
waves. The stochastic components that lead to deviations fro
pure limit cycle behavior manifest themselves in different cy
lengths and a slight variation of shape.
6392 © 1998 The American Physical Society
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PRE 58 6393PHASE SPACE EMBEDDING OF ELECTROCARDIOGRAMS
single lead measurement. Phase space reconstruction
been developed for purely deterministic systems. We do
want to make this assumption here. We will argue, howev
as to why the technique can be appropriate in this case
spite the stochastic component of the signal.

Delay reconstruction of electrocardiograms

In many cases of practical interest, such as the ECG,
not possible to measure the state variables of a system
rectly. Instead, the measuring procedure yields some v
x5w(j), when the system is in statej. Here,w is a mea-
surement function that in general, depends on the state
ables in a nonlinear way. The time evolution of the state
the system results in a scalar time seriesx1 ,x2 ,x3 ,... . In
order to reconstruct the underlying dynamics in phase sp
delay embedding techniques are commonly used. Delay
tors xn5(xn ,xn2 l ,xn22l ,...,xn2(d21)l) are a convenien
method of transforming the scalar time series in
d-dimensional vectors. Here,d corresponds to the embed
ding dimension whilel is the lag between the time serie
elements. In the case of purely deterministic systems,
embedding theorem by Takens@7# and its generalization by
Sauer, Yorke, and Casdagli@8# assure the equivalence b
tween the reconstruction space and the original phase s
of the system under fairly broad conditions. Figure 3 show
two-dimensional reconstruction of the first 5000 time ser

FIG. 2. Simultaneous measurements of breath and heart r
upper and middle trace. The lower trace contains a random
sequence preserving the autocorrelation structure and the cros
relation to the fixed breath rate series. The surrogate data m
much of the structure contained in the data, but not all.

FIG. 3. Two dimensional delay reconstruction with delay tim
12 ms using 5000 data points of the whole ECG sequence f
which two cycles are shown in Fig. 1.
has
ot
r,
e-

is
di-
ue

ri-
f

e,
c-

e

ce
a
s

elements (20s) of the ECG sequence underlying Fig. 1 b
using delay coordinates at a lag of 12 ms.

While for the signal processing applications discuss
later usually much higher embedding dimensions are nee
even the two-dimensional representation illustrates the
derlying phase space structure succinctly. It is remarka
that the signal structure in phase space is close to a man
~which will be exploited for noise reduction purposes d
cussed later!. This suggests that the underlying generati
process is basically deterministic, which manifests itself
regular cycles, while the stochastic degrees of freedom l
to deviations from the basic cycle. While the fluctuations
cycle shape are indicated in the delay reconstruction,
stochastic variation of the time between cycles cannot
seen directly. This can be easily understood in the contex
the following simplifying model. Let us suppose that th
onset of a new cycle is started by an external trigger sig
and that theRR-interval time fluctuates stochastically aroun
the mean heart rate. Let us further assume that the E
signal rests on the base line after a cycle is finished, un
new trigger signal starts the next depolarization. Since
constant base line corresponds to a single point in ph
space, the stochastic variation of the cycle length canno
revealed using delay vectors, provided they span a t
shorter than the interbeat times. In order to reconstruct
underlying dynamics fully, it is necessary to use some ad
tional information, such as the trigger signal, describing
onset of the next cycle.

To conclude this introduction, the delay reconstructi
technique can help to reveal aspects of the nature of
underlying process, but it is not cleara priori that the dy-
namics of the system can be reconstructed by using d
coordinates in the case of stochastic forcing, even if the e
bedding dimension is chosen sufficiently large. Fortunate
the embedding theorems proven recently by Stark and
workers@9,10# ~in the following we refer to these theorem
by the initials of the authors: SBDO! generalize the well
known Takens embedding theorem@7# and provide results
for the phase space reconstruction of stochastically for
dynamical systems. On the basis of the SBDO theorem
possible to reconstruct the higher dimensional phase sp
from the scalar time series data by using delay coordina
when the sequence of stochastic influences that act on
system is known. Of course, in the case of the ECG,
don’t know the driving process. However, we will argue th
the necessary information can be recovered from the signa
posteriori.

II. EMBEDDING OF STOCHASTICALLY
DRIVEN SIGNALS

In this section we give an overview over the fundamen
notions introduced in the papers by Stark and co-work
@9,10# in order to state the key points of the essential emb
ding theorem for stochastic systems. We try to simplify t
notation used as far as possible. The statement of the t
rem as well as the formalism introduced are illustrated in
examples discussed subsequently.

In order to describe stochastic forcing, Stark consid
skew product systems~to avoid confusion we denote th
state variables of the system byj while x labels the delay
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6394 PRE 58MARCUS RICHTER AND THOMAS SCHREIBER
vectors built from the scalar time series measurement
order to reconstruct the phase space of the system!:

jn115f~jn ,Vn!,

Vn115s~Vn!.

The dynamical systemf is stochastically driven by the bi
infinite sequenceV5...v22v21v0v1v2 ..., where V is
built up by symbolsv i that influencef. The time evolution
of the stochastic sequenceV is realized by the maps shift-
ing the elements ofV to the left by one position. In eac
time step, the dynamicsf is affected only by the centra
elementv0 of V. It is natural to express the dependence of
on vn by a sequence of mapsfn(j)5f(j,vn), so that the
dynamical system becomes

jn115fn~jn!. ~1!

In this framework it is possible to modify the underlyin
dynamics in each time step. This formalism will be illum
nated in an example given below where the phase spac
construction of a circular motion with fluctuating radius
discussed.

The central theorem of@10# addresses faces the questi
of whether it is possible to reconstruct the phase spac
stochastically driven systems only on the basis of the t
series. In analogy to the usual embedding techniques,
can define thed-dimensional delay embedding mapF:M
→Rd for skew product systems by

Fv~jn!5„w~jn!,w~jn11!,...,w~jn1d21!… ~2!

~the use of the term ‘‘prelay’’ rather than ‘‘delay’’ vectors
for technical reasons!. Here, the indexv has to be kept since
the future ofjn depends explicitly on the stochastic sequen
V under consideration. This can be stressed by writing

Fv~jn!

5~w~jn!,w„fn~jn!…,...,w„fn1d22~ ...fn11„fn~jn!…...!…!,

~3!

where we have made use of Eq.~1!. Essentially, the main
theorem~No. 3.5@10# and No. 7@9#, respectively! says that if
d>2d011, then there is aresidual setof dynamical systems
f and measurement functionsw, so that the delay embeddin
map Fv yields an embedding for almost every stochas
sequencev. For the detailed genericity conditions onf, w,
andv we refer to@9,10#.

The crucial point here—compared with the embedd
theorems by Takens@7# and Sauer, Yorke, and Casdag
@8#—is that it is not possible to reconstruct the underlyin
dynamics fully on the basis of only the measured time ser
even if the embedding dimensiond is sufficiently large and
the dynamical systemf as well as the measurement functio
w are generic. In order to take the stochastic nature of
process into account, it is necessary to use additional in
mation describing the stochastic influences. To be prec
the knowledge of the underlying stochastic sequence is
sential for the definition of the delay embedding map~3!.

As an illustrative example consider the map
in
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~4!

whereRf is a rotation byf,

Rf5S cos~f! 2sin~f!

sin~f! cos~f!
D ,

and the radiusr n is chosen at random betweenr min andr max
while the rotation anglef is fixed and generically incom
mensurate with 2p.

For simplicity, let the measurement functionw ‘‘mea-
sure’’ the first coordinate:

w~jn!5xn .

The central question is now whether the scalar time se
x0 ,...,xn ,xn11 ,... yields an appropriate basis to reconstru
the dynamics of the system. Figure 4 contains a schem
representation of the phase space structure underlying e
tion ~4!. Since the fluctuations of the radius are bounded
r min and r max, the points generated according to Eq.~4! are
sprinkled over a disk. This disk corresponds to the comp
manifold M in the theorems by Stark and co-workers.

For a moment consider the case that the sequence of
would be fixed to one:r n[1. In this specific case it is obvi
ous that the two-dimensional delay reconstruction m
F(xn21)5(xn21 ,xn)—which is based on the measureme
function specified above—yields an embedding for alm
every value off. This is simply due to the fact that a un
form motion on a circle can easily be reconstructed by
first Cartesian coordinate since both coordinates are rel
by a constant phase shift. As far as adeterministicvariation

FIG. 4. Illustration of the phase space structure underlying eq
tion ~4!. After many iterations, the dots evenly fill the disk are
betweenr min and r max.
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PRE 58 6395PHASE SPACE EMBEDDING OF ELECTROCARDIOGRAMS
of the radius is involved—according to Takens
theorem—at least three-dimensional delay embedding m
are needed to avoid self-intersections in reconstruction sp
It can be seen quickly that a pure delay embedding techn
in which the dimension takes into account only the degr
of freedom off is, in general, not sufficient to reconstruct th
underlying dynamics in the case ofstochastic forcing. In
contrast to deterministic systems, due to the stochastic in
ences crossing points can appear between the trajectorie
the manifoldM as indicated in Fig. 4. In order to determin
the continuation of the trajectories, it is necessary to
some information beyond the delay coordinates. Fortunat
as Stark points out in the theorem cited above, the additio
knowledge of the driving stochastic sequence allows the
reconstruction of the underlying dynamics. Referring to m
~4!, the knowledge of the sequence of radiir n allows the
continuation of the trajectories beyond the crossing poin

Apart from the pure illustrating function regarding th
basic idea underlying Stark’s theorem, the model discus
can help to motivate the embedding of more realistic sign
such as ECG sequences. As indicated in Fig. 3, the d
reconstruction of a normal human electrocardiogram be
resemblance to a limit cycle structure with fluctuations.
pointed out in the Introduction, the fluctuations affect bo
the cycle length and its shape. One natural way to desc
the stochastic influences would be by trying to observe
driving input signal. However, the variable parameters t
influence the ECG wave form are not usually accessible
measurements and in fact, are not fully known. This is
general problem with the approach behind the work of St
and co-workers, as well as that of Casdagli@11#: regarding a
system as an input-output device is only useful for the an
sis of time series if both the output and the input sequen
are observed.

One of the main ideas we want to put forth in this pape
that there are situations in which the input sequence ca
some extent be inferred from the observed data. In suc
case, the embedding procedure may be applied success
on the theoretical foundation of the theorem discussed ab
In the case of the ECG, the stochastic driving mainly affe
the duration of the cycles, which is accessible a posterior
measuring theRR intervals. If there is a variation of the ECG
wave form itself that can be captured by a few paramet
these can also be measured once the ECG has been reco
The fact we use in doing this is that ECG recordings cont
considerable redundancy. With regard to ECG signals
implies that the explicit specification of the underlying s
quenceV is not strictly necessary to make use of the emb
ding technique.

Let us study one more toy model to illustrate how t
lacking information about the input sequence may be c
tained in a signal from an input-output system. Conside
damped harmonic oscillator,

ẍ1 ẋ1x5a~ t !, ~5!

where the driving term is zero except for kicks of rando
strength at timest i such that the interbeat intervals,t i
2t i 21 are random in the interval@p,q#. Figures 5 and 6
show two trajectories of such a system with different choi
of the interbeat time interval@p,q#. On discretization, the
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kicks are realized by finite jumps by a random amount in
interval@0,1#. The upper panel in each of these figures sho
the true phase space, while in the lower panels a delay
resentation is used with a delay of one time unit. In Fig.

FIG. 5. Trajectories of a kicked, damped harmonic oscillat
Upper: true phase space. Lower: delay embedding. Kicks oc
close in time.

FIG. 6. Same as Fig. 5, but kicks are well separated in time s
that the system can relax between kicks.
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6396 PRE 58MARCUS RICHTER AND THOMAS SCHREIBER
beats are initiated with a time separation ofp50 to q
5T/2 where T54p/)'7.26 time units is the period o
oscillation. This does not allow the system to relax su
ciently between kicks in order to form characteristic struct
in phase space. Consequently, an embedding provide
clear picture. In Fig. 6, no kicks were closer in time thanp
5T, the maximal separation beingq53T. The interbeat
parts of the trajectory are distinct because of the differ
kick strength, but since this is the only fluctuating parame
they are essentially restricted to a two-dimensional manifo
This manifold is preserved under time delay embedding
though neither the sequence of beat times nor the beat
plitudes are used explicitly. The randomness prevails in
indeterminacy at the origin as to when the next beat w
occur.

III. PREDICTING AND PROJECTING ECG SIGNALS

While the structure of a normal human ECG is well pr
dictable on a scale considerably shorter than one cycle, fl
tuations in cycle length limit the accuracy at the onset of
QRS complexes. Therefore, large deviations can be fo
between the original ECG data and the one-step predict
generated as soon as a new QRS complex appears, whil
difference between both signals is usually comparable to
magnitude of the noise level. Figure 7 illustrates these de
tions with the ECG sequence plotted. The ansatz cho
makes explicit use of the phase space reconstruction by d
vectors xn . The ECG data considered are highly ove
sampled so thatxn11 is close toxn up to some corrections
that are modeled by radial basis functions:

~6!

The constantC handles a zero offset directly instead by fi
ting via radial basis functions, which would affect the qual
of the parametersak , b, andck . In order to place the center
ck of the basis functions, a grid-based algorithm was us
The result plotted in Fig. 7 was achieved by aspiring a u
form density of centers over the phase space regions o
pied by the reconstruction vectors and a total number of
basis functions. Increasing the number of basis functi

FIG. 7. Deviations between the ECG sequence@12# ~upper
trace! and one-step predictions generated according to Eq.~6!. The
signals are measured in uncalibrated AD units.
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leads to a better approximation of the ECG signal and the
fore a lower in-sample prediction error. In Fig. 7 the pred
tion error during the interbeat times is comparable to
magnitude of the original ECG data noise level. It is rema
able that the error of the one-step predictions is much lar
at the onset of the QRS complexes so that the overall di
bution is nonuniform. Therefore one might conclude that
onset of the next QRS complex remains unpredictable.

To reduce the uncertainty underlying the onset of the n
QRS complex one could think of using the length of t
following RR interval as an additional input signal. It migh
be possible to lower the large prediction error at the beg
ning R wave by this technique, since the moment of t
spikelike deflection is now completely determined. The u
of an additional input sequence that characterizes the
chastic degrees of freedom corresponds to the fixing of
stochastic sequenceV in the formalism introduced by Stark
Since the prediction of ECG signals is not in itself of mu
practical relevance, we do not describe further details. T
concrete implementation is technically involved and wou
go far beyond the scope of this paper.

State space reconstruction techniques form an esse
tool for noise reduction purposes. In order to separate
signal from its noise components, basically two differe
techniques can be pursued.~I! On one hand, a global fit to
the dynamical equations can be used for the reconstructio
a noiseless trajectory of the system, as has been done in@13#,
for example. In this context, state space reconstruction te
niques are involved to capture the underlying dynamics.
example in Eq.~6! the reconstruction technique enters v
the delay vectorsxn . As an iterative method for reaching
trajectory that obeys the reconstructed dynamics, grad
descent methods have been investigated in@13#. ~II ! On the
other hand, it is possible to exploit the local structure in t
reconstruction space directly for noise reduction purpo
without referring to the global underlying dynamics. Met
ods based on this local projective approach have been
posed in@14#; see@15# for a review. The idea is that if it is
found empirically that the data points in reconstruction sp
are located close to a manifold, the error by projecting o
that manifold may be smaller than the error due to the no
If the trajectory of the system lies on a low-dimensional
tractor, the projection technique can indeed be shown to
duce noise. But also for nondeterministic signals, nonlin
noise reduction techniques have been successfully app
for signal processing tasks such as ECG noise reduction@16#
or fetal ECG extraction@17,18#. The basic reason why thi
works is the mechanism illustrated in Fig. 6. These sign
in spite of being nondeterministic, nevertheless are nea
low-dimensional manifold. Let us give the extraction of th
fetal ECG as an application of the delay embedding of E
signals ~fetal electrocardiography is the only method
monitor the cardiac activity of the fetus in a noninvasi
way!. Figure 8 contains a two-dimensional delay represen
tion of an abdominal ECG recording~left panel! and the
reconstructed maternal manifold structure~right panel! by
the projective noise reduction approach. Segments of the
responding time series are shown in Fig. 9~data by courtesy
of Hofmeister@19#!. The upper trace contains the abdomin
signal~electrodes have been placed on the maternal abdo
to record most of the fetal heart activity! while the middle
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PRE 58 6397PHASE SPACE EMBEDDING OF ELECTROCARDIOGRAMS
trace shows the abdominal projection of the maternal e
trocardiogram that has been extracted by noise reduc
The difference between the upper and middle trace yields
noisy fetal component, which can be cleaned up in a sec
noise reduction step~lower trace!. The extraction of the feta
electrocardiogram is broadly described in@20#, for a power-
ful modification of the projective algorithm that allows th
real time extraction of the fetal electrocardiogram on a lap
PC ~Pentium processor at 133 MHz, Linux operating syste
250 Hz sampling rate! see@21#.

As another practical application, phase space reconst
tion techniques can be employed for the localization of fu
damental ECG waves such asP, R, or T waves. Instead of
comparing the structures directly on the basis of the ti
series, similar ECG waves can be identified as adjac
curves in reconstruction space. For example, the smaller
to the lower left side of the origin in Fig. 3 corresponds
the P waves of the full ECG sequence partially plotted
Fig. 1, while the larger framing loop is due to the QR
complex. For the automatic detection of ECG cycle substr
tures, delay vectors are defined to be neighbors if their
tance to the vector under consideration is smaller tha
given size~for neighbor searching methods cf., e.g.,@3#!.
Nearby trajectories can be identified in phase space
searching for neighbors of the reconstruction vectors o
specified structure. On the basis of the original time ser
these trajectories correspond to segments that are simil
the specified one. By tagging aP, R, or T wave of a given
electrocardiogram, previous or following waves of this ty
can be located automatically.

FIG. 8. Delay reconstruction of the abdominal ECG record
~left panel! and the maternal component~right panel!.
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To conclude, embedding techniques form a fundame
starting point for many applications. Therefore, it is desira
to motivate the reconstructability of the phase space in
case of typical time series. We illuminated this issue by c
sidering the example of the human electrocardiogram. Un
the working hypothesis that fluctuations beyond the regu
structure of the cardiac cycle are unpredictable we found
embedding theorems of Stark and coworkers@9,10# to be
useful to motivate the embedding of ECG data. Finally,
discussed useful applications that are based on phase s
reconstructions of the electrocardiogram in order to give
amples of how embedding techniques can be employed
practical tasks.
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FIG. 9. Fetal ECG extraction by locally linear projections
phase space. The abdominal recording~upper trace! contains a
dominant maternal component and the fetal signal, which is cove
by noise. The first noise reduction step yields the reconstruc
maternal signal~middle!, which allows to separate the noisy fet
ECG from the original recording. A second projection can be
plied to clean up the fetal component~lower trace!.
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