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Phase space embedding of electrocardiograms
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We study properties of the human electrocardiogram under the working hypothesis that fluctuations beyond
the regular structure of single cardiac cycles are unpredictable. Against this background we discuss the pos-
sibility of using the phase space embedding method for this kind of signal. In particular, the specific nature of
the stochastic or high-dimensional component allows us to use phase space embeddings for certain signal
processing tasks. As practical applications, we discuss noise filtering, fetal ECG extraction, and the automatic
detection of clinically relevant features. The main purpose of the paper is to connect results of embedding
theory that have not been previously applied in practice, and practical applications that have not yet been
justified theoretically[S1063-651X%98)10911-X]

PACS numbd(s): 87.10+e

[. INTRODUCTION two consecutiver waves) On the other hand, a slight varia-
tion of the cycle shape and amplitude can be observed. Both

In nonlinear time series analysis, methods developed ikinds of fluctuations can be gathered from Fig. 1, where two
nonlinear dynamics are applied to time series data in order téifferent cycles of the same ECG sequence are shown. As
capture as much of the underlying structure as possible. Orne can see in Fig. 2, part of the variation of the heart rate
central question is whether the dynamics of the system catimiddle tracg of a human at rest can be connected with the
be reconstructed on the basis of the data given. Given thereath cycle(upper trace (Data from the Santa Fe Institute
case in which the considered system is deterministic, théme series conte$t].) The lower trace contains a random-
dynamics unambiguously evolves one state in phase spat&ed sequence that has the same autocorrelation structure,
into another. Therefore, the reconstruction of phase space &d the same cross correlation to the breath rate as the
a fundamental problem that plays the key role in many apmiddle trace. For details regarding the generation of these
plications: as long as the state space reconstruction remaig¥rrogate data, and further references, see Rgf. These
unjustified all of the consequent analysis may be wrongrandom surrogate data explain most but not all of the under-
From this point of view, we discuss the phase space embedying structure by linear correlations. One explanation for the
ding of realistic signals in the example of the normal humarféemaining structure might be the presence of a high-
electrocardiogram. An introduction to nonlinear dynamics isdimensional or nonlinear stochastic component. In this paper
found in[1,2]. An account of nonlinear time series methodsWe adopt as a working hypothesis that the fluctuations in the
is given by[3]. instantaneous heart rate are effectively unpredictable.

The e|ectr0cardiograr(‘ECG) is one of the most promi- The Fourier domain is inappropriate to capture the struc-
nent clinical tools to monitor the activity of the heart. In ture described above, since the variation in cycle length leads
order to record an electrocardiographical signal, metal eled0 a dominating broad band component. An alternative
trodes are placed on the patient's chest wall and extremitieg/ould be to formulate the dynamics of the ECG cycle by a
(for details see, e.gl4]). The potentials are generated by the stochastically driven model in a low dimensional phase
atrial and ventricular muscle fibers. Due to the placement opace. Since this space is not fully accessible by measure-
the electrodes on the skin at some distance from the hearf}ents, we propose the use of the delay reconstruction tech-
the signals measured correspond to action potentials that aféque[7] as a convenient tool for revealing both the regular
averaged over large regions of tissue. The spreading of thand stochastic aspects of the electrocardiogram. Using this
electrical activity over the cardiac muscle is controlled by thetechnique, one attempts to reconstruct the state varigtés
conduction system of the heart. Atrial and ventricular con-the system represented in phase space on the basis of the
traction and relaxation, respectively, correspond to character-
istic ECG waves that are traditionally labeled in alphabetic
order beginning with the letteP. As long as the average
heart rate does not change dramatically, a nonpathological
ECG shows a nearly periodic structure, which is due to the
continuous generation of action potentials and the fixed pat-
tern according to which the electrical activity spreads out
over the cardiac muscle. However, apart from the determin-
istic structure some kind of variability can be found. Onone  giG. 1. Two different cycles of the same ECG have been
hand, the length of the time interval between successivgjigned(indicated by the arrowright before the beginning of the
beats fluctuates—to a certain extent—around the mean heafkves. The stochastic components that lead to deviations from a
rate.(In the medical literature the inter-beat-interval is oftenpure limit cycle behavior manifest themselves in different cycle
called theRR interval, which is defined as the time betweenlengths and a slight variation of shape.
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T T T elements (26) of the ECG sequence underlying Fig. 1 by

U —
E § using delay coordinates at a lag of 12 ms.
'@9‘( While for the signal processing applications discussed
= later usually much higher embedding dimensions are needed,
— 80 f ~ even the two-dimensional representation illustrates the un-
o E O 7] derlying phase space structure succinctly. It is remarkable
E - that the signal structure in phase space is close to a manifold
5 E 80 T‘ [ (which will be exploited for noise reduction purposes dis-
== ¥ cussed latgr This suggests that the underlying generating
L L L process is basically deterministic, which manifests itself in
0 min 5 min 10 min 15 min regular cycles, while the stochastic degrees of freedom lead

time to deviations from the basic cycle. While the fluctuations in
FIG. 2. Simultaneous measurements of breath and heart rate(:;%/Cle sh'ape are, indicated ',n the delay reconstruction, the
upper and middle trace. The lower trace contains a randomize§tochastic variation of the time between cycles cannot be

sequence preserving the autocorrelation structure and the cross c&€€n directly. This can be easily understood in the context of

relation to the fixed breath rate series. The surrogate data mimithe following simplifying model. Let us suppose that the

much of the structure contained in the data, but not all. onset of a new cycle is started by an external trigger signal
and that theR R-interval time fluctuates stochastically around

single lead measurement. Phase space reconstruction HR§ mean heart rate. Let us further assume that the ECG
been developed for purely deterministic systems. We do nctignal rests on the base line after a cycle is finished, until a
want to make this assumption here. We will argue, however€W trigger signal starts the next depolarization. Since the

as to why the technique can be appropriate in this case déonstant base line corresponds to a single point in phase
spite the stochastic component of the signal. space, the stochastic variation of the cycle length cannot be

revealed using delay vectors, provided they span a time
shorter than the interbeat times. In order to reconstruct the
Delay reconstruction of electrocardiograms underlying dynamics fully, it is necessary to use some addi-

In many cases of practical interest, such as the ECG, it iional information, such as the trigger signal, describing the

not possible to measure the state variables of a system dpnset of the next cycle. _ _
rectly. Instead, the measuring procedure yields some value To_conclude this introduction, the delay reconstruction
x= (&), when the system is in stag Here, ¢ is a mea- technique can help to reveal aspects of the nature of the

surement function that in general, depends on the state varnderlying process, but it is not clearpriori that the dy-
ables in a nonlinear way. The time evolution of the state off@mics of the system can be reconstructed by using delay
the system results in a scalar time Serg@sx,,Xs,... . In coordinates in the case of stochastic forcing, even if the em-

order to reconstruct the underlying dynamics in phase SpaCQ'edding dimension is chosen sufficiently large. Fortunately,

delay embedding techniques are commonly used. Delay ved® embedding theorems proven recently by Stark and co-
tors Xo=(Xn ,Xn—1 Xn—o21 Xn_(@_1y) are a convenient workers[9,10] (in the following we refer to these theorems
n n&n—1/n—21 1+ &Xn—(d—

method of transforming the scalar time series intoPY the initials of the authors: SBDCgeneralize the well
d-dimensional vectors. Herel corresponds to the embed- KNOWn Takens embedding theorel] and provide results
ding dimension whild is the lag between the time series for the phase space reconstruction of stochastically forced
elements. In the case of purely deterministic systems, thgyna_mlcal systems. On the ba5|s of _the SBDO theorem it is
embedding theorem by Takefi&] and its generalization by possible to reconstruct the higher dimensional phase space

Sauer, Yorke, and CasdadB] assure the equivalence be- from the scalar time series data by using delay coordinates

tween the reconstruction space and the original phase Spa)g@en the sequence of stochastic influences that act on the

of the system under fairly broad conditions. Figure 3 shows &YSteM i known. Of course, in the case of the ECG, we

two-dimensional reconstruction of the first 5000 time seriedon't know the_dnvmg Process. However, we will argue that
the necessary information can be recovered from the sagnal

posteriori
500

Il. EMBEDDING OF STOCHASTICALLY
DRIVEN SIGNALS

In this section we give an overview over the fundamental
notions introduced in the papers by Stark and co-workers
[9,10] in order to state the key points of the essential embed-

1000 ding theorem for stochastic systems. We try to simplify the
~1000 -500 O 500 notation used as far as possible. The statement of the theo-
#(t — 12ms) [AD-units] rem as weII'as the formalism introduced are illustrated in the
examples discussed subsequently.

FIG. 3. Two dimensional delay reconstruction with delay time  In order to describe stochastic forcing, Stark considers
12 ms using 5000 data points of the whole ECG sequence frorskew product systeméo avoid confusion we denote the
which two cycles are shown in Fig. 1. state variables of the system ywhile x labels the delay

-500

z(t) [AD-units]
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vectors built from the scalar time series measurements in
order to reconstruct the phase space of the system

& 1=1(&,.Qn),
Qni1=0(Qy).

The dynamical systerfi is stochastically driven by the bi-
infinite sequence(l=...0_>w_1wow w,..., Where Q) is
built up by symbolsw; that influencef. The time evolution
of the stochastic sequen€kis realized by the map shift-
ing the elements of) to the left by one position. In each
time step, the dynamic§ is affected only by the central
elementw, of (). It is natural to express the dependencé of
on w, by a sequence of magg(&)=f(& w,), so that the
dynamical system becomes

FIG. 4. lllustration of the phase space structure underlying equa-
tion (4). After many iterations, the dots evenly fill the disk area

£ 1=Tn(&). (1) betweenr i, andr pax-

In this framework it is possible to modify the underlying
dynamics in each time step. This formalism will be illumi-

nated in an example given below where the phase space re- Tnt1 _ Tnt1 R Tn
construction of a circular motion with fluctuating radius is o ¢l
discussed. Ynt1 ——\ Yn
f

The central theorem dfL0] addresses faces the question — "
of whether it is possible to reconstruct the phase space of §on £, (4
stochastically driven systems only on the basis of the time
series. In analogy to the usual embedding techniques, one Zo
can define thed-dimensional delay embedding malp: M = rn+1R[(n+1)¢]
—RY for skew product systems by Yo

P, (&) =(e(&).0(&nr1), - 0(nra-1)) 2
. . . . . whereR, is a rotation byg,

(the use of the term “prelay” rather than “delay” vectors is
for technical reasonsHere, the index» has to be kept since cog¢) —sin(¢)
the future of§, depends explicitly on the stochastic sequence Rg= sin( &) cog d))),

Q) under consideration. This can be stressed by writing

and the radius, is chosen at random betweeg;, andr .
P, (&) while the rotation anglep is fixed and generically incom-
= (@(£), @ &), @ (Fnrg 2l FpiaFa(£).))),  Mensurate with 2. .
For simplicity, let the measurement functign “mea-
(3 sure” the first coordinate:

where we have made use of Ed). Essentially, the main o(&)=X,.
theorem(No. 3.5[10] and No. 79], respectively says that if
d=2d,+1, then there is aesidual sebf dynamical systems The central question is now whether the scalar time series
f and measurement functiogs so that the delay embedding Xg,...Xn,Xn+1,--. Yields an appropriate basis to reconstruct
map @, yields an embedding for almost every stochasticthe dynamics of the system. Figure 4 contains a schematic
sequenceaw. For the detailed genericity conditions éng,  representation of the phase space structure underlying equa-
and o we refer t0[9,10]. tion (4). Since the fluctuations of the radius are bounded by
The crucial point here—compared with the embeddingr i, andr ., the points generated according to E4). are
theorems by Taken§7] and Sauer, Yorke, and Casdagli sprinkled over a disk. This disk corresponds to the compact
[8]—is that it is not possible to reconstruct the underlying manifold M in the theorems by Stark and co-workers.
dynamics fully on the basis of only the measured time series, For a moment consider the case that the sequence of radii
even if the embedding dimensiahis sufficiently large and would be fixed to oner,=1. In this specific case it is obvi-
the dynamical systerhas well as the measurement function ous that the two-dimensional delay reconstruction map
¢ are generic. In order to take the stochastic nature of thé(x,_41)=(X,_1,X,)—which is based on the measurement
process into account, it is necessary to use additional inforfunction specified above—yields an embedding for almost
mation describing the stochastic influences. To be precisevery value ofé. This is simply due to the fact that a uni-
the knowledge of the underlying stochastic sequence is e$erm motion on a circle can easily be reconstructed by its
sential for the definition of the delay embedding m&p first Cartesian coordinate since both coordinates are related
As an illustrative example consider the map by a constant phase shift. As far asleterministicvariation
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of the radius is involved—according to Takens's T T

theorem—at least three-dimensional delay embedding maps 1k i

are needed to avoid self-intersections in reconstruction space.

It can be seen quickly that a pure delay embedding technique 05 b i

in which the dimension takes into account only the degrees =

of freedom off is, in general, not sufficient to reconstruct the 0

underlying dynamics in the case stochastic forcing In

contrast to deterministic systems, due to the stochastic influ- 05 i

ences crossing points can appear between the trajectories on | )

the manifoldM as indicated in Fig. 4. In order to determine 0 0.5 1

the continuation of the trajectories, it is necessary to use 2(t)

some information beyond the delay coordinates. Fortunately,

as Stark points out in the theorem cited above, the additional 1

knowledge of the driving stochastic sequence allows the full

reconstruction of the underlying dynamics. Referring to map

(4), the knowledge of the sequence of radii allows the

continuation of the trajectories beyond the crossing points. —
Apart from the pure illustrating function regarding the &

basic idea underlying Stark’s theorem, the model discussed

can help to motivate the embedding of more realistic signals 0 -

such as ECG sequences. As indicated in Fig. 3, the delay

reconstruction of a normal human electrocardiogram bears ' L

resemblance to a limit cycle structure with fluctuations. As 0 0.5 1

pointed out in the Introduction, the fluctuations affect both &(t — 1 unit)

the cycle length and its shape. One natural way to describe

thg .SIO(.:haStIC .|nfluences would be by. trying to observe th%pper: true phase space. Lower: delay embedding. Kicks occur

driving input signal. However, the variable parameters that, <. in time.

influence the ECG wave form are not usually accessible to

measurements and in fact, are not fully known. This is

05

FIG. 5. Trajectories of a kicked, damped harmonic oscillator.

rfildcks are realized by finite jumps by a random amount in the

general problem with the approach behind the work of Sta ! :
and co-workers, as well as that of Casd&gli]: regarding a interval[0,1]. The upper panel in each of these figures shows
' the true phase space, while in the lower panels a delay rep-

system as an input-output device is only useful for the analy tation | d with a del f . i In Fid. 5
sis of time series if both the output and the input sequencersesen ation Is used with a defay ot one ime unit. in =1g. 5,

are observed.

One of the main ideas we want to put forth in this paper is 1
that there are situations in which the input sequence can to
some extent be inferred from the observed data. In such a

case, the embedding procedure may be applied successfully, 05 F
on the theoretical foundation of the theorem discussed above. =
In the case of the ECG, the stochastic driving mainly affects =
the duration of the cycles, which is accessible a posteriori by ok

measuring th&® Rintervals. If there is a variation of the ECG
wave form itself that can be captured by a few parameters,
these can also be measured once the ECG has been recorded.
The fact we use in doing this is that ECG recordings contain
considerable redundancy. With regard to ECG signals this
implies that the explicit specification of the underlying se-
guence() is not strictly necessary to make use of the embed- T
ding technique. 05 -

Let us study one more toy model to illustrate how the
lacking information about the input sequence may be con-
tained in a signal from an input-output system. Consider a
damped harmonic oscillator,

x(t)

X+x+x=a(t), (5)

| |
where the driving term is zero except for kicks of random 0 05

strength at timest; such that the interbeat intervals;,
—t;_, are random in the intervdlp,q]. Figures 5 and 6
show two trajectories of such a system with different choices FIG. 6. Same as Fig. 5, but kicks are well separated in time such
of the interbeat time intervdlp,q]. On discretization, the that the system can relax between kicks.

@(t — 1 unit)
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leads to a better approximation of the ECG signal and there-
fore a lower in-sample prediction error. In Fig. 7 the predic-
tion error during the interbeat times is comparable to the
magnitude of the original ECG data noise level. It is remark-
able that the error of the one-step predictions is much larger
at the onset of the QRS complexes so that the overall distri-
bution is nonuniform. Therefore one might conclude that the
onset of the next QRS complex remains unpredictable.

To reduce the uncertainty underlying the onset of the next
QRS complex one could think of using the length of the

FIG. 7. Deviations between the ECG sequeritg] (upper following RRinterval as an additional input signal. It might
trace and one-step predictions generated according to@qThe  be possible to lower the large prediction error at the begin-
signals are measured in uncalibrated AD units. ning R wave by this technique, since the moment of the

spikelike deflection is now completely determined. The use

beats are initiated with a time separation p0 to g  of an additional input sequence that characterizes the sto-
=T/2 where T=4x/v3~7.26 time units is the period of chastic degrees of freedom corresponds to the fixing of the
oscillation. This does not allow the system to relax suffi-stochastic sequende in the formalism introduced by Stark.
ciently between kicks in order to form characteristic structureSince the prediction of ECG signals is not in itself of much
in phase space. Consequently, an embedding provides nwactical relevance, we do not describe further details. The
clear picture. In Fig. 6, no kicks were closer in time ti@n concrete implementation is technically involved and would
=T, the maximal separation being=3T. The interbeat go far beyond the scope of this paper.
parts of the trajectory are distinct because of the different State space reconstruction techniques form an essential
kick strength, but since this is the only fluctuating parameterfool for noise reduction purposes. In order to separate the
they are essentially restricted to a two-dimensional manifoldsignal from its noise components, basically two different
This manifold is preserved under time delay embedding altechniques can be pursued) On one hand, a global fit to
though neither the sequence of beat times nor the beat artiie dynamical equations can be used for the reconstruction of
plitudes are used explicitly. The randomness prevails in th@ noiseless trajectory of the system, as has been ddigjin
indeterminacy at the origin as to when the next beat willfor example. In this context, state space reconstruction tech-
occeur. niques are involved to capture the underlying dynamics. For
example in Eq.(6) the reconstruction technique enters via
the delay vectorg,,. As an iterative method for reaching a
trajectory that obeys the reconstructed dynamics, gradient

While the structure of a normal human ECG is well pre-descent methods have been investigatefdL8]j. (11) On the
dictable on a scale considerably shorter than one cycle, flumther hand, it is possible to exploit the local structure in the
tuations in cycle length limit the accuracy at the onset of thaeconstruction space directly for noise reduction purposes
QRS complexes. Therefore, large deviations can be foundithout referring to the global underlying dynamics. Meth-
between the original ECG data and the one-step predictionsds based on this local projective approach have been pro-
generated as soon as a new QRS complex appears, while thesed in[14]; see[15] for a review. The idea is that if it is
difference between both signals is usually comparable to theound empirically that the data points in reconstruction space
magnitude of the noise level. Figure 7 illustrates these deviaare located close to a manifold, the error by projecting onto
tions with the ECG sequence plotted. The ansatz chosetfiat manifold may be smaller than the error due to the noise.
makes explicit use of the phase space reconstruction by deldf/the trajectory of the system lies on a low-dimensional at-
vectors x,. The ECG data considered are highly over-tractor, the projection technique can indeed be shown to re-
sampled so thax,. ; is close tox, up to some corrections duce noise. But also for nondeterministic signals, nonlinear

ECG-voltage [AD-units]

|
0s ls 2s 3s 4s

IIl. PREDICTING AND PROJECTING ECG SIGNALS

that are modeled by radial basis functions: noise reduction techniques have been successfully applied
for signal processing tasks such as ECG noise redufii®n
K or fetal ECG extractiorf17,18. The basic reason why this
Trgl = Tp + Zak exp (—b[xn — ck]Q) +C. works is the mechanism illustrated in Fig. 6. These signals,
k=1 in spite of being nondeterministic, nevertheless are near a

vl

low-dimensional manifold. Let us give the extraction of the
fetal ECG as an application of the delay embedding of ECG
(6) signals (fetal electrocardiography is the only method to
monitor the cardiac activity of the fetus in a noninvasive
The constanC handles a zero offset directly instead by fit- way). Figure 8 contains a two-dimensional delay representa-
ting via radial basis functions, which would affect the quality tion of an abdominal ECG recordindeft pane) and the
of the parametera, , b, andc, . In order to place the centers reconstructed maternal manifold structurgght panel by
c, of the basis functions, a grid-based algorithm was usedhe projective noise reduction approach. Segments of the cor-
The result plotted in Fig. 7 was achieved by aspiring a unitesponding time series are shown in Figdata by courtesy
form density of centers over the phase space regions occof Hofmeister[19]). The upper trace contains the abdominal
pied by the reconstruction vectors and a total number of 1@ignal(electrodes have been placed on the maternal abdomen
basis functions. Increasing the number of basis functionso record most of the fetal heart activityhile the middle

F(xn)
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X004 s X1-0.04 s 0

FIG. 8. Delay reconstruction of the abdominal ECG recording 0 5s

(left pane) and the maternal componefright pane).
FIG. 9. Fetal ECG extraction by locally linear projections in

trace shows the abdominal projection of the maternal eled®hase space. The abdominal recordiugper tracg contains a
trocardiogram that has been extracted by noise reductior‘r‘.om'n_"’mt materr_lal com_ponent an_d the fetal _slgnal,whlch is covered
The difference between the upper and middle trace yields thf Noise. The first noise reduction step yields the reconstructed
noisy fetal component, which can be cleaned up in a secongggrzz:ns'gllagn;'?:ﬁ’rg\gf{;nanoxvssézosnzparritzctt?oennf;ybfeeil i
noise reduction steflower tracg. The extraction of the fetal lied to clean u ?he tetal com %n affbwer traE): &)J P
electrocardiogram is broadly described[20], for a power- P P P '
ful modification of the projective algorithm that allows the
real time extraction of the fetal electrocardiogram on a laptop To conclude, embedding techniques form a fundamental
PC (Pentium processor at 133 MHz, Linux operating systemstarting point for many applications. Therefore, it is desirable
250 Hz sampling rajesee[21]. to motivate the reconstructability of the phase space in the

As another practical application, phase space reconstrucase of typical time series. We illuminated this issue by con-
tion techniques can be employed for the localization of funssidering the example of the human electrocardiogram. Under
damental ECG waves such Bs R, or T waves. Instead of the working hypothesis that fluctuations beyond the regular
comparing the structures directly on the basis of the timestructure of the cardiac cycle are unpredictable we found the
series, .similar ECG waves can be identified as adjacerdmbedding theorems of Stark and coworkf9si0] to be
curves in reconstruction space. For example, the smaller loogseful to motivate the embedding of ECG data. Finally, we
to the lower left side of the origin in Fig. 3 corresponds 10 giscussed useful applications that are based on phase space
the P waves of the full ECG sequence partially plotted in reconsiructions of the electrocardiogram in order to give ex-
Fig. 1, while the larger framing loop is due to the QRS g e of how embedding techniques can be employed for
complex. For the automatic detection of ECG cycle substruc: ;

; ) ; 2" - “practical tasks.

tures, delay vectors are defined to be neighbors if their dis-
tance to the vector under consideration is smaller than a
given size(for neighbor searching methods cf., e.[B)).
Nearby trajectories can be identified in phase space by
searching for neighbors of the reconstruction vectors of a
specified structure. On the basis of the original time series, We thank John F. Hofmeister and Petr Saparin for provid-
these trajectories correspond to segments that are similar t8g ECG recordings, and Holger Kantz and Rainer Hegger
the specified one. By taggingR, R, or T wave of a given for stimulating discussions. This work was partially
electrocardiogram, previous or following waves of this typesupported by the SFB 237 of the Deutsche Forschungsge-
can be located automatically. meinschatt.
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